Jump to content
Co nového? Mé kurzy
Články a tutoriály:
Archiv článků Psychologie obchodování Jak na obchodní plán Mé obchodní strategie
  • Simple mean reversion – statistiky, různé akcie a portfolio kouzla

    K nově publikovaným hotovým kódům strategie Simple mean reversion jsem dostal řadu dotazů na výkonnost a chování na dalších trzích. V článku přináším mnoho testů, které mohou poskytnout inspiraci i při obchodování jiných vašich systémů.

    V prvé řadě ale malé upozornění. Historické backtesty jsou vždy jen orientační. Pokud vám v testech vyjde například nejvyšší historický drawdown 15 %, tak to neznamená, že v budoucnu nebudete mít vyšší. Naopak. S velkou pravděpodobností tomu tak bude. Osobně se tak více orientuji na metriky typu sharpe ratio, průměrná historická volatilita a na testech sleduji hlavně stabilitu výsledků na různých trzích a obdobích. Testy dokonce provádím na více platformách. Jednak proto, abych eliminoval možnost chyby v kódech (na každé platformě skriptuji strategii samostatně) a také proto, že různé platformy jsou různě pokročilé a umí třeba trochu něco jiného. A dnes už mě vůbec nepřekvapuje, že i po maximálním odladění skriptů mohou být v testech na různých platformách rozdíly – na jedné vidím např. průměrné roční zhodnocení 14 % na druhé 15,5 % a podobně. Důvodů může být celá řada, ať již drobné odchylky práce s historickými daty, nebo trochu jiné způsoby výpočtů indikátorů. Podstatné je, že výsledky různých testů se mohou trochu lišit. V dnešním článku publikuji testy z workflow, kde jsem více schopen používat portfolio simulace a maximálně přesně používám historická data akcií tak, jak byla obchodována v minulosti (samozřejmě zahrnuji delistované akcie, odděluji účtované dividendy atd.). Výsledky se tak v detailech mohou lišit od backtestů např. v Amibrokeru nebo MultiCharts. Ale jde skutečně o detaily, které osobně nepovažuji za podstatné.

    Všechny níže uvedené testy jsou za období 1.1.2000 – 5.3.2023. Backtest startuje s účtem 20 000 dolarů (lze použít i menší). Jsou aplikovány komise účtované běžně Interactive Brokers. Co se páky týče – jednotlivé strategie obchoduji bez páky. Každé strategii vždy přiřadím celkový dostupný kapitál (tj. první obchody pracují s 20 000 atd.). Na úrovni portfolia (SMR Short + SMR Long) je tedy použitá maximálně dvojnásobná páka v momentě, kdy by byly obsazeny všechny pozice Short i Long strany strategie (což se prakticky nestává).

    Níže uvedené testy pracují se zcela shodným nastavením, jako poskytuji v hotových kódech Simple mean reversion.

    Test 1 – základní SMR long a SMR short (Russell 3000)

    V doprovodné výuce k hotovým kódům Simple mean reversion aplikuji strategii na americké akcie obchodované v rámci indexu Russell 3000. Tato data jsou pro vytváření signálů poměrně dobře dostupná i bez toho, aniž by bylo potřeba používání dražších Norgate dat (můžete vyjít například z našeho Yahoo downloaderu poskytovaného v Techlabu, jehož součástí jsou i aktuální konstituenty právě indexu Russell 3000).

    Backtest indikuje zhruba následující historický průběh:

    image.png

    Červená linka představuje SMR short, modrá SMR long, černá linka „portfolio“ SMR short + SMR long. Šedá výkonnost benchmarku – držení SPY (S&P 500 osobně používám jako univerzální benchmark ve svých portfoliích).

    Upozornění – zejména u shortů je historická výkonnost jen orientační, protože v backtestu nelze ověřit, jestli byla akcie skutečně shortovatelná či nikoliv.

    Strategie v tomto testu reinvestují kapitál, ale pouze „sami do sebe“ – tedy pozice SMR long se zvyšují tak, jak se zvyšuje equity křivka SMR long a stejně tak u SMR short.

    Základní statistiky celého portfolia (long + short):

    Počet obchodů: 12 930
    Průměrné roční zhodnocení: 25,77 %
    Maximální drawdown: -28,77 %
    Průměrná historická volatilita: 9,62 %
    Sharpe ratio: 1,85
    Úspěšnost: 61,83 %
    Průměrný zisk: 3,87 %
    Průměrná ztráta: -4,27 %
    Průměrné využití kapitálu: 59,15 %

    Test 2 – základní SMR long a SMR short (všechny US akcie)

    S poskytnutými hotovými kódy ale není nutné se omezovat na akcie konkrétních indexů. Sám například obchoduji všechny aktuálně obchodované US akcie.

    Pokud úplně stejný kód jako v testu 1 aplikuji místo na akcie Russell 3000 na všechny US akcie, dostanu následující výsledky:

    image.png

    Červená linka představuje SMR short, modrá SMR long, černá linka „portfolio“ SMR short + SMR long. Šedá výkonnost benchmarku – držení SPY (S&P 500 osobně používám jako univerzální benchmark ve svých portfoliích).

    Strategie v tomto testu opět reinvestují kapitál pouze „sami do sebe“ – tedy pozice SMR long se zvyšují tak, jak se zvyšuje equity křivka SMR long a stejně tak u SMR short.

    Základní statistiky celého portfolia (long + short):

    Počet obchodů: 14 020
    Průměrné roční zhodnocení: 35,50 %
    Maximální drawdown: -15,53 %
    Průměrná historická volatilita: 10,88 %
    Sharpe ratio: 2,29
    Úspěšnost: 62,45 %
    Průměrný zisk: 4,23 %
    Průměrná ztráta: -4,53 %
    Průměrné využití kapitálu: 63,51 %

    Stejná šablona, ovšem lepší výsledky díky tomu, že obchodujeme více akcií.

    Test 3 – rebalancované portfolio (všechny US akcie)

    A nyní si pojďme ukázat malý trik, který má zásadní dopad na výsledky obchodování. Do obchodování zapojím rebalancování portfolia.

    SMR long je přidělen každý den 100 % dostupného kapitálu na úrovni portfolia. A stejně tak SMR short – také pracuje každý den se 100% dostupným kapitálem. Oproti testu 1 a 2 se tedy portfolio každý den rebalancuje. Pokud jedna strategie začne hodně vydělávat, výdělky jsou před novým vstupem rovnoměrně rozděleny do obou strategií – výdělky jedné strategie jsou použity nejen pro tuto jednu strategii, ale i pro druhou (a stejně při prodělcích).

    Stále pracuji se stejnou obchodní logikou a stejným nastavením kódů, které poskytujeme v rámci hotových kódů simple mean reversion strategie. Jen obchodovaná pozice je ovlivněna rebalancováním portfolia (tato simulace je dělána mimo Amibroker).

    image.png

    Černá linka je equity rebalancovaného portfolia (SMR long + SMR short), šedá pro porovnání držení S&P 500 (akcie SPY).

    Základní statistiky celého portfolia (long + short):

    Počet obchodů: 14 020
    Průměrné roční zhodnocení: 71,83 %
    Maximální drawdown: -22,83 %
    Průměrná historická volatilita: 19,02 %
    Sharpe ratio: 2,54
    Úspěšnost: 62,50 %
    Průměrný zisk: 4,23 %
    Průměrná ztráta: -4,53 %
    Průměrné využití kapitálu: 63,51 %

    Rebalancování systematických portfolií je skutečně hodně mocná taktika, kterou sám u těchto strategií v rámci svého alternativního systematického fondu používám.

    Pozn.: Rebalancování portfolií nelze s poskytnutými hotovými kódy historicky simulovat (Amibroker toto neumí), ale samozřejmě taktiku lze s hotovými kódy aplikovat na budoucí obchody.

    Test 4 – rebalancované portfolio (všechny US akcie), výstup další den na OPEN

    V rámci Simple mean reversion strategie vystupuji při uzavření trhů a má to jednu ohromnou výhodu. Jelikož používám „MOC“ (Market On Close) příkazy, vystupuji za cenu, která je prakticky skoro vždy shodná s tou, kterou vidím jako denní uzavírací cenu na historických grafech (a tudíž mám ve svém obchodování vůči backtestům vesměs jen minimální skluz v plnění – vstupuji limity a vystupuji právě pomocí „MOC“ příkazů).

    Strategii lze ale určitě obchodovat i tak, že vystupujeme „další den za otevírací cenu“. Níže je uveden backtest, který se kromě času výstupu neliší s testem 3. V praxi ale bude třeba ještě u výstupu na otevírací ceně počítat se skluzem v plnění.

    image.png

    Černá linka je equity rebalancovaného portfolia (SMR long + SMR short), šedá pro porovnání držení S&P 500 (akcie SPY).

    Počet obchodů: 14 094
    Průměrné roční zhodnocení: 74,58 %
    Maximální drawdown: -21,53 %
    Průměrná historická volatilita: 20,09 %
    Sharpe ratio: 2,47
    Úspěšnost: 61,85 %
    Průměrný zisk: 4,50 %
    Průměrná ztráta: -4,74 %
    Průměrné využití kapitálu: 63,28 %

    Výsledky jsou při výstupu tedy teoreticky dlouhodobě ještě lepší než na close. V praxi je ale třeba započítat skluzy v plnění a osobně bych si tipl, že výsledky tak budou s variantou 3 hodně podobné.

    Test 5 – rebalancované LONG portfolio (US a kanadské akcie)

    Poskytnuté hotové kódy lze použít nejen na americké akcie. Osobně strategii obchoduji i na dalších trzích – v tuto chvíli hlavně na kanadských, ale postupně plánuji spustit i další.

    Zde je pro ilustraci ukázka, jak vypadá rebalancované portfolio long strany (tedy bez shortování akcií, které zatím mimo US nedělám) amerických a kanadských akcií.

    Pro obchodování kanadských akcií je použit stále stejný kód, kde bylo jen nastaveno obchodování akcií od 1 USD (na kanadské burze jsou i velmi likvidní akcie obchodovány za nižší ceny). Jsou aplikovány komise tak, jak je účtuje Interactive Brokers (obchodování kanadských akcií je dražší než v US). POZOR: Pro zjednodušení není řešen kurzový rozdíl kanadský vs. americký dolar – akcie jsou obchodovány ve stejné měně (tedy backtest je v tomto směru orientační a neuvádím zde podrobné statistiky).

    image.png

    Modrá linka US akcie, zelená kanadské akcie, černá portfolio – SMR long na kanadských a amerických akciích, šedá pro porovnání držení S&P 500 (akcie SPY).

    Test dobře ilustruje, jak je strategie robustní – lze ji bez modifikací pustit i na další trhy a lze se tak diverzifikovat (dlouhodobá korelace mezi oběma trhy na výše uvedeném grafu je jen 0,28).

    Shrnutí

    Swingové mean reversion strategie vnímám jako velmi robustní a tvořím s nimi jeden ze základních pilířů mého systematického portfolia. Samozřejmě strategie mají horší i lepší měsíce (a roky), ostatně o těch horších jsem psal nedávno v článku Co mi nyní funguje v obchodování? II. Ale dnes publikované testy ukazují, že základní princip swingového mean reversion je velmi silný. Za důležité považuji poměrně vyšší frekvenci obchodů, s jejíž pomocí lze podstatně zlepšovat výkonnost prostřednictvím rebalancování (viz výsledky testu 3 vůči testu 2). Strategie přitom obchodují se stále stejnou logikou. Jediné, co se mění, je position sizing.

    Konkrétní sdílenou strategii dále v portfoliu kombinuji s dalšími přístupy. Ale jak je vidět na výše uvedených testech, i jen samotné obchodování Simple mean reversion strategie představuje silnou obchodní taktiku. Tu můžete v naprosto stejné podobě zapojit do svého tradingu skrz poskytnuté hotové kódy strategie Simple mean reversion.

    6.3.2023

    Petr Podhajský

    Fulltime obchodník věnující se tradingu více než 20 let. Specializace na systematické strategie obchodované na futures a akciích. Oblíbený styl obchodování: stavba automatizovaných portfolio systémů, které využívá i při správě většího externího kapitálu.

    • Líbí se 5
    • Děkuji 2

    Sdílíme, co nám samotným funguje.
    7 výukových lekcí.

    Jak reálně uspět v tradingu?

    Naučte se vydělávat na své sny (naše metody na Finančník.cz)

    Praktický návod, jak v trzích získat šanci vydělávat stovky tisíc až miliony dolarů ročně bez vlastního kapitálu a nutností trávit denně hodiny před počítači (bez práce to ale nepůjde).

    >> Získat kurz zdarma <<

    Další články na toto téma

    TechLab – od nuly k automatickým portfoliím

    Na Finačníkovi vnímáme jako nejsmysluplnější cestu vydělávání peněz na burze skrze maximální využití automatizace. Mezi hlavní benefity patří výraznější psychologická pohoda při obchodování (v porovnání s diskrečním tradigem) a časová nenáročnost. Samotné obchodování zabírá maximálně pár minut denně, kdy kontrolujeme chod všech skriptů.
    Že lze vše zvládnout i bez počátečních znalostí programování, ukazují i reference dosavadních účastníků skupiny, které naleznete na této adrese.
    Podstatné je ale uvědomit si, že vytvoření komplexního automatizovaného worfklow nejde hned, nejde to ani za měsíc. Jde o postupnou práci. Dobrou zprávou ale je, že pro vydělávání peněz není potřeba mít hned hotové celé workflow. Stačí jen menší část, které pak věnujete o trochu více času manuálním dohledem a postupně vše vylepšujete.
    A jelikož jsme si sami prošli celým procesem „od nuly“ k automatizovanému portfoliu, vznikla na Finančníkovi před lety skupina TechLab. Jejím cílem je pomoci Vám vytvořit podobné automatizované řešení, jaké sami používáme v každodenní praxi. Ve skupině proto najdete všechny potřebné informace.
    Podrobný popis skupiny naleznete na stránce https://tri.financnik.cz/techlab. V tomto dokumentu jsme připravili rámcový popis cesty, jak se k automatizaci dostat krok za krokem.
    Automatizace pochopitelně přináší potřebu osvojení nového know-how. Zejména pokud do ní přicházíte ze světa neprogramátorů tak jako my. Ve skutečnosti není pro automatizaci obchodování nutné zvládnout pokročilé programování (viz reference stávajících účastníků). Spíše je potřeba postupně si osvojit práci s drobnými nástroji a ty vhodně poskládat dohromady.
    TechLab je skupina, kde sdílíme postupy, které sami využíváme v každodenní praxi.
    Sami přitom na automatizovaných řešení pracujeme již mnoho let a naše workflow jsou tak již poměrně propracovaná. V principu si automatizované obchodování můžete představit jako následující diagram:

    S podobným workflow se například nebojíme ani spravovat externí peníze (Petr provozuje alternativní fond založený na automatizovaných strategiích). Ohromnou výhodou podobných automatizovaných procesů je i skutečnost, že je lze pohodlně škálovat. Do fungujícího workflow obchodujícího určitý počet strategií lze vždy snadno přidat další strategii obchodující jiný princip, jiný timeframe nebo jiný typ trhů. To vede jak k možnosti vyšší diverzifikace (postupování nižšího risku), tak možnosti pracovat s vyšším kapitálem. Řada obchodníků dnes tak skrz poskytované know-how obchoduje pomocí automatizovaného workflow s velmi malou časovou náročností buď své úspory, nebo se zaměřují i na správu větších peněz.
    V TechLabu naleznete vše potřebné, abyste si sami vytvořili podobné řešení. Zejména pokud se s prostředím automatizace obchodování zatím seznamujete, může Vám zprvu přijít TechLab až příliš odborný.
    Je to proto, že mnoho obchodníků zde už na sobě pracuje roky a za tu dobu jsou podstatně dál, než jste nyní vy. Ale nezoufejte. Všichni jsme začínali z podobného stavu „nula“. Je opravdu potřeba nespěchat a postupovat kupředu pomalu. Je dobré sledovat nové minikurzy a tutoriály, ale nemějte stres z toho, že nebudete všemu rozumět.
    Pro zvládnutí automatizovaného obchodování doporučujeme následující postup:
    1. Začít zprovozněním poskytnutých blokových řešení (na paper účtu)
    Prvním krokem je zvládnutí automatizace získávání obchodních signálů a následného odeslání obchodních příkazů do obchodní platformy pomocí vlastních skriptů (programů). Zní to složitě? První dobrou zprávou je, že v této fázi nemusíte umět programovat. V rámci TechLabu najdete velké množství tutoriálů, ve kterých je spousta tipů a návodů, jak této základní úrovně automatizace dosáhnout svépomocí.
    Další dobrou zprávou je, že jsme připravili workshopy, které Vás dílčími kroky automatizace plynule provedou, a jejichž součástí jsou plně funkční skripty. Doporučujeme začít absolvováním Workshopu swingového obchodování (kde se seznámíte s principy swingových strategií a naučíte se získávat signály pro vstup/výstup z pozic). Následně můžete pokračovat ročním předplatným TechLabu Automatizace (kde navíc získáte plně funkční skript autotraderu s podrobným popisem používání). Spolu s programem Amibroker (který je třeba si pořídit samostatně) budete mít k dispozici veškeré nástroje pro vytvoření níže uvedeného automatizovaného worfklow. Doporučujeme spustit na paper účtu a postupně ladit cokoliv, co nebude fungovat.
     

     
    Zkušenější obchodníci mohou TechLab využívat v nejlevnějším typu předplatného „Podpora“. V něm získáte veškeré know-how a podporu, ale bez hotových řešení, které stačí „instalovat a spustit“.
    Jakýkoliv dotaz pište do TechLabu. Nejlépe do vlákna První automatizace. Relativně brzy byste měli mít v provozu první jednoduché automatizované workflow, které spustíte na svém osobním počítači jednou za den dopoledne evropského času a během pár minut máte hotovo.
    V této fázi nebudete patrně zasahovat do poskytnutých skriptů. Nicméně v budoucnu bude potřeba si řešení upravit přesně podle vlastních požadavků. Je proto dobré začít se seznamovat s Amibrokerem a Pythonem. Pro oba programy pořádáme v TechLabu minikurzy pro začátečníky. Vyhlašujeme je průběžně v průběhu roku. Každý živý běh minikurzu je trochu jiný, je moderovaný a obohacený mnoha domácími úkoly, které řeší celá komunita. Do výuky se však můžete pustit hned. V rámci ročního předplatného TechLabu Automatizace máte přístup k archivu minikurzů, které naleznete na této stránce. Jako první doporučujeme pustit se do minikurzů Základy zvládnutí Pythonu – od nuly k práci s daty a První strategie v Amibrokeru. Ke kurzům v archivu není aktivní podpora, ale samozřejmě můžete dotazy pokládat v běžné diskuzi TechLabu.
     2. Napojení obchodního deníku
     Jako další krok doporučujeme do workflow zařadit obchodní deník. Ten připravil v Pythonu trader s přezdívkou Unlimited a je ke stažení zde.
    Vaše workflow pak bude v cíli vypadat následovně:

    Práce na obchodním deníku Vás může vytížit určitě na několik týdnů. Zejména pokud budete současně pronikat do základů Pythonu. Je to hlavně proto, že obchodní deník již můžete začít pomalu přizpůsobovat svým vlastním potřebám a v rámci jeho studia začít podrobněji analyzovat svá data.
    Rozhodně doporučujeme shlédnout minikurz Obchodní deník v Pythonu, který průběžně vyhlašujeme, případně rovnou ze záznamu, ke kterému mají přístup všichni s ročním předplatným TechLab Automatizace.
    Další tutoriály, které Vám mohou pomoci v této fázi:
    V prvním kroku můžete spravovat výsledky vedené v Excelu. Tutoriál je publikován zde. K automatizovanému deníku můžete připojit i obchody zpracované před uvedením do jeho provozu. Tutoriál je publikován zde. 3. Zapojení podpůrných skriptů
    V této fázi by Vám již měla běžet docela solidní automatizace, jejíž provoz zabírá maximálně desítky minut týdně. Příkazy z Amibrokeru jsou předávány Autotraderem do Interactive Brokers. Veškeré obchody jsou zaznamenány v databázi. Máte k dispozici statistiky o svém obchodování a dokážete vytvářet podobné portfolio grafy slučující výkonnosti jednotlivých strategií:

    Nyní se můžete zaměřit na pilování workfow. Můžete zapojit skripty vyřazující duplicitní trhy z obchodovaných portfolií, stahovat data o shortovatelnosti z FTP Interactive Brokers a vyřazovat neshortovatelné akcie ze signálů (pokud pracujete se short strategiemi), stahovat data o vyhlašování earnings a příslušným způsobem je zapracovat do signálů Mean reversion strategií. Jednoduše pracovat na mnoha vychytávkách, které v průběhu času v TechLabu zmiňujeme.
    Zásadní jsou v této oblasti následující tutoriály:
    Kontrola shortovatelnosti akcií. Tutoriál je publikován zde. Automatizované stahování dat vyhlašování dividend. Tutoriál je publikován zde. Filtrování obchodních signálů na earnings data pomocí API. Tutoriál je publikován zde. 4. Testování nových strategií
    Prioritou TechLabu je pomoci dostat Vás do produkční fáze systematického portfolio obchodníka. Proto jsme poskytli bloky, které je možné od startu bez větších znalostí pospojovat a začít s nimi pracovat – na paper účtu nebo nějakém malém živém účtu (poté, co do problematiky sami proniknete a nástroje přijmete za své). Praxe je praxe a nic ji nenahradí. Proto by mělo být prioritou co nejrychleji vše rozhýbat do každodenní rutiny, byť z počátku bez nějakých zásadních očekávání vydělávání větších peněz.
    Ovšem pro peníze trading všichni děláme. A peníze se v tradingu vydělávání skrz to, že budete obchodovat vlastní strategie a aplikovat do trhu vlastní nápady.
    Je dobré si osvojit Amibroker a postupně připravovat nové strategie nebo upravovat ty, které máte z Finančníka. Pokud jste to zatím nezkoušeli, doporučujeme shlédnout v TechLabu minikurz První strategie v Amibrokeru a pokročilejší Custom backtester v praxi. V této fázi byste měli mít již i základní know-how, jak pomocí Pythonu vytvářet vlastní portfolio analýzy a postupně posouvat obchodované portfolio kupředu.
    Zásadní jsou v této oblasti následující tutoriály:
    Vytváříme idea first systém. Tutoriál naleznete zde. Jednoduché, ale funkční portfolio pomocí sezonality. Tutoriál naleznete zde. Testování systému obchodujícího sezonalitu na futures. Tutoriál naleznete zde. Rotační strategie v Amibrokeru. Tutoriál naleznete zde. Krátkodobé systematické strategie a kryptoměny. Tutoriál naleznete zde. 5. Další automatizace
    Hodně obchodníků v TechLabu cílí na tzv. plnou automatizaci. Tedy řešení, které jim samo poběží na serveru bez toho, aniž by jej třeba několik dnů sledovali. To je určitě možné a sami tímto směrem jdeme.  Na rovinu ale zdůrazňujeme, že jemné finalizování plné automatizace zabere opravdu hodně času a znalostí, přitom už ve finále tolik času (oproti „skoro automatizovanému přístup“) nešetří  a více peněz také nevydělá. Tedy rozhodně není třeba se tímto cílem ze začátku jakkoliv stresovat a v podstatně na něj ani mířit. Z našeho pohledu stačí drtivé většině obchodníků řešení, které běží skoro samo, ale je lepší na něj trochu dohlížet.
    V TechLabu každopádně naleznete hodně tipů, jak se v této oblasti posouvat. Ukážeme Vám, jak spouštět řešení na serverech, jak využívat git, jak si posílat informace o tradingu například na mobil, jak on-line monitorovat běh programů atd.
    Zásadní jsou v této oblasti následující tutoriály:
    Aplikace pro ovládání autotraderů z mobilu. Tutoriál naleznete zde. Task Scheduler a nastavení úloh pro ID obchodování. Tutoriál naleznete zde. Workflow pro sledování běhu skriptů. Tutoriál naleznete zde. Individuální podpora
    Výše uvedené body jsme připravili proto, aby ukázaly, jakou cestou zhruba jít a co by mělo být cílem.
    Je nicméně jasné, že každý účastník TechLabu přichází do procesu vytváření automatizovaného worfklow s různými znalostmi a zkušenostmi. Každý bude bojovat s jinými překážkami a chybovými hláškami. Proto je TechLab také technickou poradnou. Pokud nevíte, jak se posunout z bodu A do bodu B, tak se ptejte. S vysokou pravděpodobností jsme podobný problém již v minulosti také řešili a jistě Vám dokážeme poradit. Prakticky každý dotaz zodpovíme nejpozději do druhého pracovního dne.
    To dělá TechLab opravdu unikáním prostředím. Získáváte přístup k obchodníkům, kteří know-how provozují v praxi, kteří v tutoriálech ukazují, jak řeší úkoly, na kterých sami pracují. A pokud si nebudete vědět rady, jak aplikovat popisované know-how do vlastní praxe, tak se stačí zeptat.
    Vzhůru do vlastní automatizace obchodování! Hlavní diskuzní vlákna TechLabu naleznete zde.
    Registrační informace naleznete na stránce https://tri.financnik.cz/techlab. V případě zájmu o změnu typu předplatného při již aktivní účasti v TechLabu pište na e-mail kurzy@finacnik.cz a změnu nastavíme ručně. E-mail můžete samozřejmě použít při jakémkoliv dotazu k TechLabu.

    Časování návratu k průměru pomocí implikované volatility

    Jedním z tradičních přístupů v systematickém obchodování s akciemi je strategie návratu k průměru (mean reversion). Tato strategie se zaměřuje na situace, kdy cena akcie dočasně vybočuje od své průměrné hodnoty a očekává se, že se brzy vrátí k normálu. Tradičně se pro časování vstupů používají nástroje technické analýzy. V dnešním článku se s vámi podělím o svůj inovativní přístup k časování vstupů vycházejících z očekávání opčních obchodníků.
    Obsah:
    Co je implikovaná volatilita? Co je realizovaná volatilita? Využití implikované volatility ve strategii návratu k průměru Praktické zkušenosti s obchodováním systému Dlouhodobý backtest systému Kombinace mean reversion systémů založených na implikované a realizované volatilitě Shrnutí Co je implikovaná volatilita?
    Pro časování vstupů a výstupů v rámci dnes popisované strategie budeme pracovat s tzv. implikovanou volatilitou (IV). Hodnota vyjadřuje očekávání obchodníků ohledně budoucích pohybů cen akcií odvozenou z cen opčních kontraktů.
    Tato volatilita se obvykle počítá na základě opcí s expirací přibližně 30 dnů a poskytuje představu o tom, jaké cenové pohyby mohou investoři v dané akcii očekávat v následujícím období. Pro využití IV nepracujeme s opcemi. Jde jednoduše o jedinou hodnotu, kterou stahujeme od svého poskytovatele dat.
    Pokud je například implikovaná volatilita akcie 15 %, znamená to, že trh očekává, že se cena této akcie bude během následujícího roku pohybovat o ±15 % kolem své aktuální hodnoty s 68% pravděpodobností (v rámci jedné standardní odchylky). Implikovaná volatilita je prakticky takový VIX index, ale pro jednotlivé akcie.
    Co je realizovaná volatilita?
    Realizovaná volatilita (historická volatilita) naopak vyjadřuje skutečné pohyby ceny akcie v minulosti. Zatímco implikovaná volatilita předpovídá budoucí pohyby na základě cen opcí, realizovaná volatilita se počítá z historických dat cenových pohybů akcií. Pro výpočet se běžně používá například indikátor Average True Range.
    Realizovaná volatilita je retrospektivní měřítko toho, jak moc se cena trhu skutečně měnila v určitém časovém období. Mnoho mean reversion strategií tradičně využívá právě realizovanou volatilitu k identifikaci momentů, kdy došlo k neobvyklým cenovým výkyvům, které pravděpodobně neodpovídají průměrnému chování dané akcie.
    Využití implikované volatility ve strategii návratu k průměru
    Mean reversion systémy využívající implikovanou volatilitu mohou být extrémně jednoduché. Sám postupuji následovně:
    Stahuji hodnoty implikované volatility pro jednotlivé akcie z Interactive Brokers. Porovnávám denní cenový pohyb s hodnotou denní implikované volatility. Pokud pokles akcie za jediný den překročí hranici denní implikované volatility, může to signalizovat, že trh ovládla panika a akcie se po zklidnění situace vrátí k průměru. Takové trhy nakupuji. Je-li systém v dlouhé pozici, snaží se vystoupit na profit targetu odvozeném z hodnoty denní implikované volatility – ta nám napovídá, jaký může být přibližně denní rozkmit trhu. Praktické zkušenosti s obchodováním systému
    Long mean reversion systém založený na porovnání denního pohybu s implikovanou volatilitou obchoduji živě od března 2024. Systém, kterému říkám DEEPDIP, obchoduji v rámci portfolia na svém větším účtu u Interactive Brokers.
    Systém mám nastavený tak, že čeká na extrémnější situace a neobchoduje tak příliš často. Od spuštění jsem živě zobchodoval 17 obchodů s anualizovaným zhodnocením 10,19 % při drawdownu -2,52 %. Sharpe ratio mých živých obchodů je 1,89. Zhodnocení systém dosáhl při průměrném využití 3,84 % kapitálu. Což je z mého pohledu opravdu excelentní.
    Takto vypadal jeden z posledních obchodů:

    Jde o typický mean reversion obchod, ve kterém je pozice otevřena maximálně několik dnů.
    Dlouhodobý backtest systému
    Na základě svých pozitivních zkušeností se systémem jsem DEEPDIP zařadil do systémů sdílených v dashboardu Trading Room. K dispozici jsou zde nyní úplně stejné signály, které sám zadávám do trhu.
    Zde je kopie backtestu z dashboardu Trading Room:

    Od roku 2019 je hypotetická (backtest) výkonnost systému srovnatelná s výkonností S&P 500, ovšem při podstatně nižším drawdownu (DEEPDIP -4,68 %, S&P 500 -33,70 %) a zejména při výrazně nižší alokaci kapitálu. Pro dosažení výnosů využíval DEEPDIP kapitál jen ze 4 %! Systém tak lze efektivně kombinovat do systematických portfolií s dalšími systémy.
    Kombinace mean reversion systémů založených na implikované a realizované volatilitě
    Využití implikované volatility k časování krátkodobých akciových obchodů je zajímavé i z toho důvodu, že vstupy bývají v úplně jiných situacích než při časování skrz realizovanou volatilitu. Analýza mých živých výsledků z roku 2024 ukazuje, že výsledky z long mean reversion strategie založené na implikované volatilitě a výsledky z long mean revision strategie založené na realizované volatilitě mají velmi nízkou a navíc negativní korelaci. Konkrétně jde o hodnotu -0,28.
    Sám tak ve svém US portfoliu obchoduji 3 mean reversion systémy – MR3000L (long systém vstupující na základě realizované volatility), MR3000S (short systém vstupující na základě realizované volatility) a DEEPDIP (long systém vstupující na základě implikované volatility). Signály všech systémů tak, jak je obchoduji, sdílím v Trading Room. MR3000 Long/Short je navíc k dispozici jako hotový swingový systém (viz - Swingový simple mean reversion (SMR) systém – „hotové kódy“).
    A takto vypadají mé živé výsledky tohoto „mean reversion portfolia“. Jde o skutečná plnění z Interactive Brokers mých reálných obchodů, které jsem jen přepočítal na kapitál 10 000 USD a alokaci přidělenou pouze těmto systémům:

    Černá linka představuje výkonnost „mean reversion“ miniportfolia, oranžová benchmark v podobě držení SPY.
    Při takto volených váhách (kdy bych měl v portfoliu jen tři mean reversion systémy) by tedy mé portfolio obchodovalo po započtení skluzů a poplatků podobně jako S&P 500, podstatné ovšem je, že průměrně alokovaný kapitál byl jen 32 %. Cca 70 % kapitálu bych mohl dále využívat v jiných systémech!
    Což je to, co přesně v rámci svého obchodování dělám. Stejný kapitál sdílený s mean reversion strategiemi ještě využívám v rámci momentum strategií a také v rámci intradenních strategií.
    Shrnutí
    Použití implikované volatility v obchodování návratu k průměru představuje podle mého názoru zajímavou alternativu k tradičním přístupům založeným na technické analýze a realizované volatilitě. Na rozdíl od realizované volatility, která se zaměřuje na minulost, implikovaná volatilita poskytuje představu o budoucích očekáváních trhu, a může tak pomoci lépe načasovat vstupy do obchodů.
    Tato metoda je obzvláště zajímavá v obdobích zvýšené volatility, kdy jsou cenové pohyby trhem výrazně podhodnoceny nebo nadhodnoceny.
    Osobně jsem se zatím nikdy s podobným využitím implikované volatility nesetkal a rozhodně si myslím, že tato cesta stojí za využití. Cesta k systému navíc není složitá. To hlavní, co dělám, je porovnání aktuálního poklesu trhu s implikovanou volatilitou stahovanou k jednotlivým akciím z Interactive Brokers.
    Pokud chcete systém využívat bez jakýchkoliv časových investic, zvažte práci se stejnou strategií, se kterou sám pracuji. Kompletní backtesty a své signály sdílím v rámci dashboardu Trading Room (spolu s dalšími strategiemi, se kterými obchoduji). Registrovat se můžete do Trading Room zde.

    Obchodovat z počátku jen jeden nebo rovnou více trhů?

    Jednou z prvních otázek, na kterou si musí začínající obchodník odpovědět, je co obchodovat. Preferovat bychom měli co nejlevnější trhy na obchodování a současně dostupné pro náš obchodní účet. Pro pomalejší swingové obchodování, které je z mé zkušenosti pro začínající tradery nejvhodnější, se z levnějších burzovních trhů nabízejí zejména akcie nebo ETF. U ETF ale bohužel platí, že americké tituly nelze s menšími účty v EU díky její regulaci obchodovat a evropské ETF jsou pak vesměs výrazně dražší na obchodování. Jako jedna z nejrozumnějších voleb pro start obchodování se tak jeví americké akcie. Zbývá ale otázka – zaměřit se na jednu akcii, několik málo titulů nebo nějakou větší skupinu?
    Jeden z běžných pohledů na toto téma může být začít obchodovat jediný trh, specializovat se na něj, získat pro něj cit, a teprve potom si přidávat do obchodovaného portfolia další trhy. Musím se přiznat, že v počátku své kariéry profesionálního obchodníka jsem měl na věc podobný pohled, který jsem však v průběhu doby výrazně přehodnotil.
    Obchodování jen jediného trhu není zdaleka optimální a u většiny obchodníků to vede k situacím zbytečně způsobujícím ztráty.
    Jedním z důvodů je ten, že obchodování jednoho trhu svádí technické obchodníky k tendenci „subjektivně předvídat vývoj ceny“. Vnímají, že trh dělá něco, co již v minulosti zažili a trh by se mohl zachovat podle jejich očekávání. Takové přesvědčení bývá velmi silné a často vede k porušení jemných pravidel obchodních plánů. Jednoduše se obchodníci snaží „známou“ situaci obchodovat agresivněji, protože „ví“, jak trh zareaguje. Asi nemusím příliš podrobně rozepisovat, že podobné chování v trzích dlouhodobě generuje ztráty. Budeme obchodovat jen naše pocity a dojmy, které nevycházejí ani z dostatečného statistického vzorku dat. Jednoduše řečeno – naše mysl si vzpomene na jednu, dvě podobné situace z minulosti, kdy trh vypadal podobně jako nyní a bude z toho vyhodnocovat obecné, velmi silné závěry. A věřte mi, mozek je v tomto ohledu specialista. Jednou z jeho základních vlastností je podporovat nás v našem vlastním úsudku, což je přesně to, co se pro trading v podobné situaci vůbec nehodí.
    Dalším úskalím při obchodování jediného trhu je frekvence obchodů. Budeme-li čekat na swingové obchody vycházející z denních grafů, můžeme se připravit spíše na maximálně několik signálů za měsíc (a spíše méně). To je pochopitelně zejména pro začínající obchodníky málo. A tak bude jejich přirozenou tendencí obchodování slabších situací, případně snižování timeframe a přechod na intradenní obchody.
    Místo zaměření se na jediný trh je tak lepší obchodovat více trhů najednou. Můžeme se soustředit jen na nejsilnější situace vycházející například z denní struktury trhu a zároveň budeme mít díky současné analýze více trhů k dispozici větší množství obchodních signálů. U futures kontraktů toto bohužel vede k potřebě větších obchodních účtů, neboť se musíme připravit na situace, kdy budeme obchodovat více obchodních příležitostí najednou. U akcií lze ale obchodovat i velmi malé pozice, a je tak možné obchodovat více trhů i s opravdu malým kapitálem. V případě akcií je navíc současné obchodování více trhů najednou vhodné i z pohledu řízení risku. Jednotlivé akcie mívají tendence silně reagovat na fundamentální zprávy. Není výjimečné, když se přes noc cena titulu hýbne o deset a více procent jedním nebo druhým směrem (např. po vyhlášení ekonomických výsledků firmy). Sám tak obchoduji v systému nejméně 5 různých akciových titulů, většinou ale více. Pokud jedna z držených pozic divoce poskočí, nemá to na celý účet příliš zásadní vliv.
    Jak si vybrat skupinu akcií k obchodování? Tituly si pochopitelně můžeme vybrat úplně sami třeba podle toho, které akcie jsou nám sympatické. Ovšem v takovém případě se s nejvyšší pravděpodobností dopustíte jednoho z „hříchů“ přeoptimalizace – tzv. klamu přeživších. Ten spočívá v tom, že si do portfolia budeme logicky vybírat jen trhy, kterým se dařilo – například dlouhodobě rostly. V takovém případě je zřejmé, že i jakýkoliv backtest strategie bude velmi ovlivněn už jen tím, jaké trhy jsme vybrali. Přitom do budoucna není zaručeno, že dnes úspěšným titulům se bude dařit stejně i nadále.
    Výběr skupiny akcií k obchodování je tak lepší provádět podle určitého systematického klíče, podle kterého jsme schopni kdykoliv v čase přesně definovat trhy, které obchodujeme. Sám pro tyto účely používám složení akciových indexů typu S&P 500, S&P 100, Dow Jones, Nasdaq 100 a podobně. Akciové indexy představují koše akcií sestavované podle jasně daných kritérií. Například Dow Jones Industrial Average je vypočítán z cen akcií 30 velkých společností obchodovaných na amerických akciových burzách. Index je sestavován pod zkratkou DJIA již od roku 1896 a máme tak mj. i velké množství dat k testování. Je potřeba dát si ale pozor na to, že společnosti se v indexech mění. Konkrétně u DJIA ale nejsou změny tak časté. Podle Wikipedie se index změnil od svého založení 54krát. Za posledních 10 let bylo změn 6. Pokud budeme testovat strategie na 30 akciích z indexu DJIA i ručně, dá se to zvládat i včetně toho, že budeme sledovat, které tituly byly skutečně v indexu v daný den zahrnuty. Složení indexů lze nalézt na mnoha stránkách – například finviz.com sekce screener, kde si vybereme index = DJIA. U větších indexů typu S&P 500, který obsahuje přibližně 500 akcií, už je pak lepší použít některé z dostupných programových řešení.
    Je vůbec možné ručně obchodovat například cenové patterny na několika set akciích současně? Vlastně to není vůbec tak náročné, jak to může znít. Je třeba mít na paměti, že v případě pomalejšího swingového obchodování se na jednotlivých trzích objeví silné vstupní situace jen jednou za čas.  Potřebujeme tak mít k dispozici jen řešení, které sleduje všechny potřebné akcie a upozorní nás na momenty, které jsou důležité (například formující se vstupní signál). Takovým řešením se říká skenery (anglicky screener). Pro swingové obchodování akcií je naleznete zdarma na řadě webů – např. již zmíněný finviz.com, oblíbený je tradingview.com atd. Na těchto webech si lze snadno a zdarma vyhledávat akcie splňující určitá obecnější pravidla – například nastavení technických indikátorů. Obchodujeme-li mechanický plán, existuje navíc mnoho softwarů, ve kterých si můžeme naskriptovat přímo konkrétní podmínky našeho obchodního plánu. A to je způsob, jak swingově sám obchoduji. Řekněme, že sleduji situaci průlomu high swingu pro breakout vstup. Danou situaci obchodního plánu si popíši pomocí mechanických pravidel a převedu do skriptu. Každý den ráno pak skript spustím třeba i na několik set trhů a software mě sám upozorní na konkrétní akcie, kde se vstupní pattern nachází. Pak už stačí zadat příkaz do obchodní platformy.
    Tímto způsobem tak mohu obchodovat silné situace odehrávající se na denních grafech trhu třeba jen několikrát do roka a současně mám k dispozici dostatečný počet signálů potřebný pro adekvátní využití pracovního kapitálu.
×
×
  • Vytvořit...